ノート
完全なサンプルコードをダウンロードするには、ここをクリックしてください
ヴァイオリンプロットの基本#
バイオリン プロットは、サンプルの確率分布の抽象的な表現を示すという点で、ヒストグラムやボックス プロットに似ています。バイオリン プロットは、ビンまたは順序統計に分類されるデータ ポイントの数を表示するのではなく、カーネル密度推定 (KDE) を使用してサンプルの経験的分布を計算します。その計算は、いくつかのパラメーターによって制御されます。この例では、KDE が評価されるポイント数を変更するpoints
方法 ( ) と、KDE の帯域幅を変更する方法( ) を示しbw_method
ます。
ヴァイオリン プロットと KDE の詳細については、scikit-learn ドキュメントにすばらしいセクションがあります: https://scikit-learn.org/stable/modules/density.html
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# fake data
fs = 10 # fontsize
pos = [1, 2, 4, 5, 7, 8]
data = [np.random.normal(0, std, size=100) for std in pos]
fig, axs = plt.subplots(nrows=2, ncols=5, figsize=(10, 6))
axs[0, 0].violinplot(data, pos, points=20, widths=0.3,
showmeans=True, showextrema=True, showmedians=True)
axs[0, 0].set_title('Custom violinplot 1', fontsize=fs)
axs[0, 1].violinplot(data, pos, points=40, widths=0.5,
showmeans=True, showextrema=True, showmedians=True,
bw_method='silverman')
axs[0, 1].set_title('Custom violinplot 2', fontsize=fs)
axs[0, 2].violinplot(data, pos, points=60, widths=0.7, showmeans=True,
showextrema=True, showmedians=True, bw_method=0.5)
axs[0, 2].set_title('Custom violinplot 3', fontsize=fs)
axs[0, 3].violinplot(data, pos, points=60, widths=0.7, showmeans=True,
showextrema=True, showmedians=True, bw_method=0.5,
quantiles=[[0.1], [], [], [0.175, 0.954], [0.75], [0.25]])
axs[0, 3].set_title('Custom violinplot 4', fontsize=fs)
axs[0, 4].violinplot(data[-1:], pos[-1:], points=60, widths=0.7,
showmeans=True, showextrema=True, showmedians=True,
quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5)
axs[0, 4].set_title('Custom violinplot 5', fontsize=fs)
axs[1, 0].violinplot(data, pos, points=80, vert=False, widths=0.7,
showmeans=True, showextrema=True, showmedians=True)
axs[1, 0].set_title('Custom violinplot 6', fontsize=fs)
axs[1, 1].violinplot(data, pos, points=100, vert=False, widths=0.9,
showmeans=True, showextrema=True, showmedians=True,
bw_method='silverman')
axs[1, 1].set_title('Custom violinplot 7', fontsize=fs)
axs[1, 2].violinplot(data, pos, points=200, vert=False, widths=1.1,
showmeans=True, showextrema=True, showmedians=True,
bw_method=0.5)
axs[1, 2].set_title('Custom violinplot 8', fontsize=fs)
axs[1, 3].violinplot(data, pos, points=200, vert=False, widths=1.1,
showmeans=True, showextrema=True, showmedians=True,
quantiles=[[0.1], [], [], [0.175, 0.954], [0.75], [0.25]],
bw_method=0.5)
axs[1, 3].set_title('Custom violinplot 9', fontsize=fs)
axs[1, 4].violinplot(data[-1:], pos[-1:], points=200, vert=False, widths=1.1,
showmeans=True, showextrema=True, showmedians=True,
quantiles=[0.05, 0.1, 0.8, 0.9], bw_method=0.5)
axs[1, 4].set_title('Custom violinplot 10', fontsize=fs)
for ax in axs.flat:
ax.set_yticklabels([])
fig.suptitle("Violin Plotting Examples")
fig.subplots_adjust(hspace=0.4)
plt.show()
参考文献
この例では、次の関数、メソッド、クラス、およびモジュールの使用が示されています。
スクリプトの合計実行時間: ( 0 分 1.134 秒)