.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "gallery/images_contours_and_fields/image_demo.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. meta::
        :keywords: codex

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_gallery_images_contours_and_fields_image_demo.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_gallery_images_contours_and_fields_image_demo.py:


==========
Image Demo
==========

Many ways to plot images in Matplotlib.

The most common way to plot images in Matplotlib is with
`~.axes.Axes.imshow`. The following examples demonstrate much of the
functionality of imshow and the many images you can create.

.. GENERATED FROM PYTHON SOURCE LINES 12-24

.. code-block:: default


    import numpy as np
    import matplotlib.cm as cm
    import matplotlib.pyplot as plt
    import matplotlib.cbook as cbook
    from matplotlib.path import Path
    from matplotlib.patches import PathPatch


    # Fixing random state for reproducibility
    np.random.seed(19680801)








.. GENERATED FROM PYTHON SOURCE LINES 25-26

First we'll generate a simple bivariate normal distribution.

.. GENERATED FROM PYTHON SOURCE LINES 26-42

.. code-block:: default


    delta = 0.025
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2

    fig, ax = plt.subplots()
    im = ax.imshow(Z, interpolation='bilinear', cmap=cm.RdYlGn,
                   origin='lower', extent=[-3, 3, -3, 3],
                   vmax=abs(Z).max(), vmin=-abs(Z).max())

    plt.show()





.. image-sg:: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_001.png
   :alt: image demo
   :srcset: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_001.png, /gallery/images_contours_and_fields/images/sphx_glr_image_demo_001_2_0x.png 2.0x
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 43-44

It is also possible to show images of pictures.

.. GENERATED FROM PYTHON SOURCE LINES 44-74

.. code-block:: default


    # A sample image
    with cbook.get_sample_data('grace_hopper.jpg') as image_file:
        image = plt.imread(image_file)

    # And another image, using 256x256 16-bit integers.
    w, h = 256, 256
    with cbook.get_sample_data('s1045.ima.gz') as datafile:
        s = datafile.read()
    A = np.frombuffer(s, np.uint16).astype(float).reshape((w, h))
    extent = (0, 25, 0, 25)

    fig, ax = plt.subplot_mosaic([
        ['hopper', 'mri']
    ], figsize=(7, 3.5))

    ax['hopper'].imshow(image)
    ax['hopper'].axis('off')  # clear x-axis and y-axis

    im = ax['mri'].imshow(A, cmap=plt.cm.hot, origin='upper', extent=extent)

    markers = [(15.9, 14.5), (16.8, 15)]
    x, y = zip(*markers)
    ax['mri'].plot(x, y, 'o')

    ax['mri'].set_title('MRI')

    plt.show()





.. image-sg:: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_002.png
   :alt: MRI
   :srcset: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_002.png, /gallery/images_contours_and_fields/images/sphx_glr_image_demo_002_2_0x.png 2.0x
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 75-120

Interpolating images
--------------------

It is also possible to interpolate images before displaying them. Be careful,
as this may manipulate the way your data looks, but it can be helpful for
achieving the look you want. Below we'll display the same (small) array,
interpolated with three different interpolation methods.

The center of the pixel at A[i, j] is plotted at (i+0.5, i+0.5).  If you
are using interpolation='nearest', the region bounded by (i, j) and
(i+1, j+1) will have the same color.  If you are using interpolation,
the pixel center will have the same color as it does with nearest, but
other pixels will be interpolated between the neighboring pixels.

To prevent edge effects when doing interpolation, Matplotlib pads the input
array with identical pixels around the edge: if you have a 5x5 array with
colors a-y as below::

  a b c d e
  f g h i j
  k l m n o
  p q r s t
  u v w x y

Matplotlib computes the interpolation and resizing on the padded array ::

  a a b c d e e
  a a b c d e e
  f f g h i j j
  k k l m n o o
  p p q r s t t
  o u v w x y y
  o u v w x y y

and then extracts the central region of the result.  (Extremely old versions
of Matplotlib (<0.63) did not pad the array, but instead adjusted the view
limits to hide the affected edge areas.)

This approach allows plotting the full extent of an array without
edge effects, and for example to layer multiple images of different
sizes over one another with different interpolation methods -- see
:doc:`/gallery/images_contours_and_fields/layer_images`.  It also implies
a performance hit, as this new temporary, padded array must be created.
Sophisticated interpolation also implies a performance hit; for maximal
performance or very large images, interpolation='nearest' is suggested.

.. GENERATED FROM PYTHON SOURCE LINES 120-132

.. code-block:: default


    A = np.random.rand(5, 5)

    fig, axs = plt.subplots(1, 3, figsize=(10, 3))
    for ax, interp in zip(axs, ['nearest', 'bilinear', 'bicubic']):
        ax.imshow(A, interpolation=interp)
        ax.set_title(interp.capitalize())
        ax.grid(True)

    plt.show()





.. image-sg:: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_003.png
   :alt: Nearest, Bilinear, Bicubic
   :srcset: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_003.png, /gallery/images_contours_and_fields/images/sphx_glr_image_demo_003_2_0x.png 2.0x
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 133-139

You can specify whether images should be plotted with the array origin
x[0, 0] in the upper left or lower right by using the origin parameter.
You can also control the default setting image.origin in your
:ref:`matplotlibrc file <customizing-with-matplotlibrc-files>`. For more on
this topic see the :doc:`complete guide on origin and extent
</tutorials/intermediate/imshow_extent>`.

.. GENERATED FROM PYTHON SOURCE LINES 139-152

.. code-block:: default


    x = np.arange(120).reshape((10, 12))

    interp = 'bilinear'
    fig, axs = plt.subplots(nrows=2, sharex=True, figsize=(3, 5))
    axs[0].set_title('blue should be up')
    axs[0].imshow(x, origin='upper', interpolation=interp)

    axs[1].set_title('blue should be down')
    axs[1].imshow(x, origin='lower', interpolation=interp)
    plt.show()





.. image-sg:: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_004.png
   :alt: blue should be up, blue should be down
   :srcset: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_004.png, /gallery/images_contours_and_fields/images/sphx_glr_image_demo_004_2_0x.png 2.0x
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 153-154

Finally, we'll show an image using a clip path.

.. GENERATED FROM PYTHON SOURCE LINES 154-175

.. code-block:: default


    delta = 0.025
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2

    path = Path([[0, 1], [1, 0], [0, -1], [-1, 0], [0, 1]])
    patch = PathPatch(path, facecolor='none')

    fig, ax = plt.subplots()
    ax.add_patch(patch)

    im = ax.imshow(Z, interpolation='bilinear', cmap=cm.gray,
                   origin='lower', extent=[-3, 3, -3, 3],
                   clip_path=patch, clip_on=True)
    im.set_clip_path(patch)

    plt.show()




.. image-sg:: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_005.png
   :alt: image demo
   :srcset: /gallery/images_contours_and_fields/images/sphx_glr_image_demo_005.png, /gallery/images_contours_and_fields/images/sphx_glr_image_demo_005_2_0x.png 2.0x
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 176-184

.. admonition:: References

   The use of the following functions, methods, classes and modules is shown
   in this example:

   - `matplotlib.axes.Axes.imshow` / `matplotlib.pyplot.imshow`
   - `matplotlib.artist.Artist.set_clip_path`
   - `matplotlib.patches.PathPatch`


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  2.555 seconds)


.. _sphx_glr_download_gallery_images_contours_and_fields_image_demo.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: image_demo.py <image_demo.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: image_demo.ipynb <image_demo.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_